Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells.
نویسندگان
چکیده
Fluid shear stress has been shown to modulate various endothelial functions, including gene expression. In this study, we examined the effect of fluid shear stress on the expression of lectin-like oxidized LDL receptor-1 (LOX-1), a novel receptor for atherogenic oxidized LDL in cultured bovine aortic endothelial cells (BAECs). Exposure of BAECs to the physiological range of shear stress (1 to 15 dyne/cm2) upregulated LOX-1 protein and mRNA in a time-dependent fashion. LOX-1 mRNA levels peaked at 4 hours, and LOX-1 protein levels peaked at 8 hours. Inhibition of de novo RNA synthesis by actinomycin D totally abolished shear stress-induced LOX-1 mRNA expression. Furthermore, nuclear runoff assay showed that shear stress directly stimulates transcription of the LOX-1 gene. Chelation of intracellular Ca2+ with quin 2-AM completely reduced shear stress-induced LOX-1 mRNA expression; furthermore, the treatment of BAECs with ionomycin upregulated LOX-1 mRNA levels in a dose-dependent manner. Taken together, physiological levels of fluid shear stress can regulate LOX-1 expression by a mechanism dependent on intracellular Ca2+ mobilization. Inducible expression of LOX-1 by fluid mechanics may play a role in localized expression of LOX-1 and atherosclerotic lesion formation in vivo.
منابع مشابه
Stress and vascular responses: endothelial dysfunction via lectin-like oxidized low-density lipoprotein receptor-1: close relationships with oxidative stress.
Endothelial dysfunction is associated with pathological vascular conditions including atherosclerosis, hypertension, and diabetes. The oxidatively modified form of low-density lipoprotein (LDL) is recognized as a major cause of endothelial dysfunction in atherogenesis. As the receptor for oxidized LDL in endothelial cells, we have identified the lectin-like oxidized LDL receptor-1 (LOX-1). LOX-...
متن کاملIdentification, regulation and function of a novel lectin-like oxidized low-density lipoprotein receptor.
Oxidatively modified low-density lipoprotein (ox-LDL) leads to endothelial activation, dysfunction and injury. Recently, a novel lectin-like receptor for ox-LDL (LOX-1) has been identified, primarily in the endothelial cells, and it allows uptake of ox-LDL into endothelial cells. This receptor is transcriptionally upregulated by tumor necrosis factor-alpha, angiotensin II, shear stress and ox-L...
متن کاملLectin-like oxidized LDL receptor-1: Its diverse roles beyond an oxidized LDL receptor and clinical relevance
Oxidative stress induced by reactive oxygen species (ROS) plays an important role in the pathogenesis of various cardiovascular diseases. The redox state is determined by the balance between the pro-oxidative and anti-oxidative systems, and its imbalance leads to oxidative stress. ROS directly induces endothelial injury and inactivates endotheliumderived nitric oxide, which is a potent protecti...
متن کاملThe Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 and Cardiovascular Disease
Lectin-like oxidized LDL receptor-1 (LOX-1), a lectin-like 50-kD receptor for oxidized low-density lipoproteins (ox-LDL), is present primarily on endothelial cells. Oxidatively modified low-density lipoprotein (oxLDL) is implicated in the pathogenesis of atherosclerosis. Endothelial dysfunction is the initial change in the vascular wall that induces morphological changes for atheroma-formation....
متن کاملInducible expression of lectin-like oxidized LDL receptor-1 in vascular endothelial cells.
Endothelial dysfunction, or activation, elicited by oxidized LDL (Ox-LDL) or its lipid constituent, has been implicated in the initiation and progression of atherosclerosis. We have recently identified a C-type lectin-like molecule, designated lectin-like Ox-LDL receptor-1 (LOX-1), which acts as a cell-surface receptor for Ox-LDL in cultured vascular endothelial cells. In this study, we provide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 83 3 شماره
صفحات -
تاریخ انتشار 1998